CS 1112 Final Review

* Review of these topics:
 Object-oriented programming
* Recursion
 Sorting algorithms
« Searching algorithms

e Some example exam problems

e Class: Afile that specifies properties (variables) and methods
(functions) associated with the item that the class represents

» Contains a constructor, a special method that creates new objects

* A class can have subclasses

* Object: One instance of a class

» Objects of the same class have the same properties and the same methods

* The properties of objects of the same class can have different values

Objects and Classes Example: Animal

classdef Animal < handle
properties

end

name; species; age; hasTail

methods

end
end

function aml = Animal(n, s, a, hT)
% set properties of aml
end
function birthday(self)
self.age = self.age+l;
end
function ¢ = checkHasTail(self)
% return 1 if hasTail = 1, else ©
end
function ¢ = isOlder(self, otherAnimal)
% return 1 if older than otherAnimal
end

Note that the end keyword is
used to close the following:
The classdef

The properties section
The methods section
Each function inside the
methods section

N =

Objects and Classes: Constructors

Constructor: A method (function) that creates a new object
* Must have the same name as the class
« Can take in parameters to set property values

* Use nargin to ensure that constructor can be called without any arguments

Objects and Classes Example: Animal

classdef Animal < handle
properties

end

name; species; age; hasTail

methods

end
end

function aml = Animal(n, s, a, hT)
% set properties of aml
end

function birthday(self)
self.age = self.age+l;
end
function ¢ = checkHasTail(self)
% return 1 if hasTail = 1, else ©
end
function ¢ = isOlder(self, otherAnimal)
% return 1 if older than otherAnimal
end

Implementation of this constructor:

function aml = Animal(n, s, a, hT)
if (nargin == 4)
aml.name = n;
aml.species = s;
aml.age = a;
aml.hasTail = hT;
end
end

If 4 arguments are not provided, the 4
properties will be set to default values.

Objects and Classes: Create/reference objects

Create new objects by calling the constructor, which returns a reference to
the new object that should be stored in a variable.

Example: a = Animal(‘Bobbert’, ‘pig’, 2, 1);

Create an empty array of Animal objects using .empty()

Example: b = Animal.empty()

Check if an object/object array is empty using isempty(<reference>)
Example: isempty(a) returns O, isempty(b) returns 1

Objects and Classes: Calling methods

Each method in a class takes in a minimum of one parameter (named
‘self’), which is a reference to the object calling the method

Syntax for calling a method:

<reference>.<methodName>(2"? through last input variable)

This is equivalent (but it is better to use the above way):

<methodName>(self, 2" through last input variable)

Objects and Classes Example: Animal

classdef Animal < handle
properties
name; species; age; hasTail

end
methods
function aml = Animal(n, s, a, hT)
% set properties of aml
end
function birthday(self)
self.age = self.age+l; EE——)
end
function ¢ = checkHasTail(self)
% return 1 if hasTail = 1, else ©
end
function ¢ = isOlder(self, otherAnimal)
% return 1 if older than otherAnimal
end
end

end

How to use this method (from
another script, function, etc.):

% Object reference should be
% created first
a = Animal(‘Bobbert’, ‘pig’, 2, 1);

% Call method
a.birthday(); % or: birthday(a);

% See result of method call
disp(a.age) % 3 will be displayed

Objects and Classes Example: Animal

classdef Animal < handle
properties
name; species; age; hasTail

/

end
methods
function aml = Animal(n, s, a, hT)
% set properties of aml
end
function birthday(self)
self.age = self.age+l;
end
function ¢ = checkHasTail(self)
% return 1 if hasTail = 1, else ©
end
function ¢ = isOlder(self, otherAnimal)
% return 1 if older than otherAnimal
end
end

end

Implementation of this method:

function ¢ = checkHasTail(self)
if (self.hasTail == 1)
c =1;
else
cC = 0;
end

end

Objects and Classes Example: Animal

classdef Animal < handle

end

Implementation of this method:

function ¢ = isOlder(self, otherAnimal)
if (self.age > otherAnimal.age)

c =1;
else
cC = 0;
end
end
Age of a is 2
. Age of b
How to use this method: is 1

a = Animal(‘Bobbert’, ‘pig’, 2, A);
b = Animal(‘Robbert’, ‘frog’, 1, 0);
disp(a.isOlder(b)) % will display 1
disp(b.isOlder(a)) % will display ©

properties
name; species; age; hasTail
end
methods
function aml = Animal(n, s, a, hT)
% set properties of aml
end
function birthday(self)
self.age = self.age+l;
end
function ¢ = checkHasTail(self)
% return 1 if hasTail = 1, else ©
end
function ¢ = isOlder(self, otherAnimal)
% return 1 if older than otherAnimal
end
end

Objects and Classes: Arrays of objects

Objects of the same class can

be stored in a simple vector/array.

Objects of different classes
(even classes which are related
by inheritance) must be stored in
a cell array.

Example: Write a function that takes in a
vector z of Animal objects and returns a
vector of the indices from z which contain
objects whose species is ‘pig’:

function idx = FindPigs(z)
idx = []; k = 1;
for i = 1:1length(z)
if (strcmp(z(i).species, ‘pig’))
idx(k) = 1i;
k = k+1;
end

end

Keywords public, private, protected can be used to restrict access to properties.

* Public properties: can be directly accessed in any subclasses or any other files that
create objects of the class

* Private properties: cannot be directly accessed outside the class methods

* Protected properties: can only be directly accessed inside class methods and
subclass methods.

Private and protected can never be directly accessed from the command line

If direct access is not possible, consider writing a ‘get’ method:

<reference>.getPropertyValue()

« Aclass can have subclasses that share properties and methods.
* Private properties are not inherited, but can be accessed through methods

* Protected properties are inherited; all subclasses can access them

 Public properties are inherited; all classes can access them

e In the constructor of a subclass, there must be a call to the
superclass constructor (using “@" notation)

Objects and Classes Example: Animal and Bird

classdef Animal < handle
properties (Access = protected)

name; species; age; hasTail

end
methods
function aml = Animal(n, s, a, hT)
% set properties of aml
end
function birthday(self)
self.age = self.age+l;
end
function ¢ = checkHasTail(self)
% return 1 if hasTail = 1, else ©
end
function ¢ = isOlder(self, otherAnimal)
% return 1 if older than otherAnimal
end
end

end

classdef Bird < Animal
properties (Access = private)

color
end
methods
function b = Bird(n, s, a, c)
b = b@Animal(n, s, a, 1);
b.color = c; hasTail = 1 T
d for all Bird
en objects!
function ¢ = getColor(self)
¢ = self.color;
end
end

end

Would | be able to write a function in the bird
class that accessed bird.name?

Review Question on OOP

The equation of a line can be written in the “slope-intercept form” y = max 4+ b where m is the slope and
b is the y-intercept. Given the the slope m and y-intercept b of a line, we can compute the following;:

e The y value at some x-coordinate xq is mxy + b

o Shifting the line in the y-direction (up or down) by Ay changes the y-intercept by Ay but the slope
remains the same.

o If line 1 with slope m; and y-intercept b; is not parallel to line 2 with slope ms and y-intercept bo,
then the two lines have one point of intersection (z;,y;) where
bo — by . bamy — bima

mi —ma2 mi —ma3

If lines 1 and 2 are parallel, then there is no intersection and we say that x; and y; are NaN (Not A
Number).

Implement class NVLine by completing the methods block as specified in the comments below.

classdef NVLine < handle
% A non-vertical line on the Cartesian plane with slope m and intercept b.
% This class defines NON-VERTICAL lines only.

properties (Access=private)
m=0; % slope, cannot be inf (i.e., cannot be vertical line)
end

properties (Access=protected)
b=0; % y-intercept
end

methods
function NVL = NVLine(s, yi)
% Construct an NVLine object with slope s and y-intercept yi. If the number
% of arguments passed is not 2 or if s is inf, stop program execution with
% a descriptive error message.

end % (Continued on next page.)

% methods block of class NVLine, continued
function y0 = yGivenX(self, x0)

% yO is the y-coordinate of the NVLine referenced by self at the
% x-coordinate x0.

end
function newline = shift (self, deltayY)

%» newlLine is a new NVLine object with the slope of self but shifted in the
% y-direction by deltaY. self references an NVLine.

end % (Continued on next page.)

function tf = parallel(self, other)
% tf is true if self and other are parallel; otherwise false.
% self, other each references an NVLine.

% DO NOT IMPLEMENT.
% ASSUME THIS METHOD IS IMPLEMENTED CORRECTLY.
end

function [xi, yi] = intersect(self, other)

% xi, yi are the x- and y-coordinates of the point of intersection between

7% self and other. self, other each references an NVLine. If self and other
% are parallel, then xi and yi should be NaN. Make effective use of instance
%» method parallel.

end
end Ymethods
end %classdef

Review Question on OOP

Designing an algorithm

T Thing we need to do Task decomposition

Determine number of input arguments;
1 | Complete the constructor NVLine Display error messages; Assign property
to an object.

2 | Complete methods yGivenX and shift Use the given math formula

Make use of the given parallel function; use if
conditions to determine if there is an intersection
or not; compute the intersection using given math
if it exists.

4 | Complete the methods intersect

Review Question on OOP: Solution

properties (Access=private)
m=0; % slope, cannot be inf (i.e., cannot be vertical line)
end

properties (Access=protected)
b=0; % y-intercept
end

methods
function NVL = NVLine(s, yi)
%» Construct an NVLine object with slope s and y-intercept yi. If the number
% of arguments passed is not 2 or if s is inf, stop program execution with
% a descriptive error message.

%% EXAMPLE SOLUTION

T

% if nargin~=2 || isinf (s)

4 error ('Not enough arguments or line is vertical')
% end

% NVL.m= s;
% NVL.b= yi;
Y Ay

end

7% methods block of class NVLine, continued

function y0O = yGivenX(self, x0)
% yO is the y-coordinate of the NVLine referenced by self at the
% x-coordinate X0,

%% EXAMPLE SOLUTION

%

% yO= self.m*x0 + self.b;
Ul

end

function newlLine = shift(self, deltaV)
%» newLine is a new NVLine object with the slope of self but shifted in the
% y-direction by deltaY. self references an NVLine.

%% EXAMPLE SOLUTION

y/

% mnewLine= NVLine(self.m, self.b+deltaV);
%o

end

function tf = parallel(self, other)
% tf is true if self and other are parallel; otherwise false.
% self, other each references an NVLine.

% DO NOT IMPLEMENT.
% ASSUME THIS METHOD IS IMPLEMENTED CORRECTLY.
end

function [xi, yi] = intersect(self, other)

% xi, yi are the x- and y-coordinates of the point of intersection between

% self and other. self, other each references an NVLine. If self and other
% are parallel, then xi and yi should be NaN. Make effective use of instance
%» method parallel.

%% EXAMPLE SOLUTION

T

% 1f self.parallel(other)

% xi= NaN;

% yi= NaN;

% else

h xi= (other.b - self.b)/(self.m - other.m);

b yi= (other.b*self.m - self.b - other.m)/(self.m - other.m);
% end

Voo

end
end 7 methods
end Y, classdef

* Arecursive function is a function that calls itself repeatedly with a smaller
Input variable each time

* Recursion stops when the parameter becomes so small that it reaches the
base case of the function

Example , .
function m = Factorial(n)

Write a function that recursively

if n==1
computes a factorial. mo= 1
eg. 4!=4*3! else
=4*3"2 m = n * Factorial(n-1);
=4*3*2*1!
end

=4*3%2*1

Recursion Example: Review Question #10

P14.1.3 Write a function that computes the reverse of a char array s
recursively. Thus, if s = “abcde’, then ‘edcba’ is its reverse. Note that if n
is the length of s, then the reverse of s is the concatenation of the reverse of
s(2:n) and s(1) in that order. Using this idea, write a recursive function t

= Reverse(s) that does this.

Recursion Example: Review Question #10

P14.1.3 Write a function that computes the reverse of a char array s
recursively. Thus, if s = “abcde’, then ‘edcba’ is its reverse. Note that if n
is the length of s, then the reverse of s is the concatenation of the reverse of
s(2:n) and s(1) in that order. Using this idea, write a recursive function t

= Reverse(s) that does this.

Reverse(['a’,’b’,'c’,’d’,’e’]) -> [Reverse(['b’,'c’,’'d’,'e]), ‘a’]

Recursion Example: Review Question #10

Write a function that recursively reverses a string.
E.g. ‘abcde’ » ‘edcba’

function t = Reverse(s)
n = length(s);

if n == % base case: if n == 1, s is the reverse of itself
t = s;
else % reverse the last n-1 characters of s, append to s(1)

t = [Reverse(s(2:n)), s(1)];
end

On each iteration of insertion sort, the algorithm does the following:
* Assume that the first k elements of the array are sorted

» Look at the (k+7)™" element, and insert it into the correct position
among the first k elements

* Now we can assume that the first (k+7) elements are sorted
* Repeat the above until: (k+7) = length of array

Sorting algorithms: Insertion sort - Example

lteration 1:

lteration 2:

4 2 3 5 6
Sorted Item to
sort
2 4 3 S 6
l Sorted | Item to
sort
2 3 4 5 6
| J
Sorted Item to
sort
2 3 4 S 6
l Sorted ' Item to
sort
2 o 4 S 6

lteration 3:

lteration 4:

lteration 5:

Sorted

x(1:1) is sorted

x(1:2) is sorted

x(1:3) is sorted

x(1:4) is sorted

x(1:5) is sorted

Sorting algorithms: Insertion sort

Insertion sort algorithm: Sort a vector x

n =

length(x)

for k = 1:n-1 % Repeat until k+1 = n

end

% Sort x(1:k+1) given that x(1:k) is sorted: move the item at

% position (k+1) backwards until it is in the correct place.

J = k;

need2swap = x(j+1) < x(j); % Check if need to move (k+1)" item backwards

while need2swap % continue moving the item backwards until
temp = x(J); % it is in the correct place

x(J) = x(j+1);

x(j+1) = temp;

J = 3J-1;

need2swap = j>0 && x(j+1)<x(j);
end

How much “work” Is insertion sort?

* In the worst case, make k comparisons to insert an element in
a sorted array of k elements. For an array of length N:

1+2+ ...+ (N-1) = N(N-1)/2, say N for big N

Merge sort on an array of length n works by:
* Dividing the vector into n arrays of 1 component each

* Merge adjacent components in sorted order to produce
ceil(n/2) arrays of length 2

» Merge adjacent vectors of length 2 in sorted order to produce
ceil(n/4) arrays of length 4

... continue merging until 1 sorted array of length n is produced

function y = mergeSort(x) function z = merge(x,y)

nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);

ix = 1; iy = 1; iz = 1;

while ix<=nx && 1iy<=ny

n = length(x); if x(ix) < y(iy)
ifn==1 z(iz)=x(ix); ix=ix+1l; iz=iz+1;
y = X; else
else z(iz)=y(iy); iy=iy+1; iz=iz+1;
m = floor(n/2); end
yL = mergeSort(x(1:m)); end
yR = mergeSort(x(m+l:n)); while ix<=nx
y = merge(yL,yR); z(iz)=x(ix); ix=ix+1l; iz=iz+1;
end end

while iy<=ny

z(iz)=y(iy); iy=iy+1; iz=iz+1;

end

Sorting algorithms: Merge sort - Example

6

4

Sorting algorithms: Merge sort - Example

Sorting algorithms: Merge sort - Example

5 6
6

5

1 3 7 8 2 4
3 1 8 7 2 4

Sorting algorithms: Merge sort - Example

Sorting algorithms: Merge sort - Example

Sorting algorithms: Merge sort - Example

1

Sorting algorithms: Merge sort - Example

1

Sorting algorithms: Merge sort - Example

1

Sorting algorithms: Merge sort - Example

1

Sorting algorithms: Merge sort - Example

1

Sorting algorithms: Merge sort - Example

y4 1 2 3 4 5 6

Sorting algorithms: Merge sort - Example

y4 1 2 3 4 5 6 7

Sorting algorithms: Merge sort - Example

V4

1

2

3

4

5

6

7

8

/\1

5

ﬁ

—

1Z:

/\ fy-
/\ /\ /\ /\

1

8

Sorting algorithms: Merge sort - Example

N-log,(N)

2 3 4 3) 6 7
5 6 2 4

8

T

Searching algorithms: Linear Search

R R X

k = 1;

while k<=length(v) && <

Linear Search

f is index of first occurrence of value x in vector v.
f is -1 if x not found.

k = k+1;

end

if k>length(v)

.F
else

.F
end

-1; % signal for x not found

k;

n comparisons against the
target are needed in worst
case,n = length(v).

Searching algorithms: Binary Search
only works on sorted arrays!

An item in a sorted array of length n can
be located with just log,n comparisons.

Searching algorithms: Binary Search

function L = binarySearch(x, v)

% Find position after which to insert x. v(1)<...<v(end)
% L is the index such that v(L)<=x<v(L+1), L=0 if x<v(1).
% If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R)
% Since x may not be in v, initially set ...
L = 9; R = length(v) + 1;

% Keep halving [L..R] until R-L is 1, always keeping v(L)<=x<Vv(R)
while R ~= L+1
m = floor((L+R)/2); 7% middle of search window
if v(m) <= X
L = m;
else
R = m:
end
end

Searching algorithms: Binary Search - Example

(%] 1 2 3 4 5 6 7 8 9 10 11 12 13
: o]
Target x = 70
m:

< [5]

Searching algorithms: Binary Search - Example

12 15 33 35 | 42 45 51 62 73 | 75 | 86 98

i} i} i}

Target x = 70

m:| 6 v(m) <= X, sothrow away the left half

Searching algorithms: Binary Search - Example

12 | 15 | 33 | 35 | 42 | 45 51 62 73 | 75 | 86 @ 98

Target x = 70

m:| 9 v(m) > X, so throw away the right half

8

9

10

11

12

Searching algorithms: Binary Search - Example

13

12 | 15 | 33 | 35 | 42 | 45 | 51 | 62 | 73 | 75 | 86 | 98
L: 6
Target x = 70
m:| 7 v(m) <= X, sothrow away the left half

8

9

10

11

12

Searching algorithms: Binary Search - Example

13

12 | 15 | 33 | 35 | 42 | 45 | 51 | 62 | 73 | 75 | 86 | 98
L: 7
Target x = 70
m:| 8 v(m) <= X, sothrow away the left half

8

9

10

11

12

Searching algorithms: Binary Search - Example

13

12 | 15 | 33 | 35 | 42 | 45 | 51 | 62 | 73 | 75 | 86 | 98
: 5]
m:| 8 Since R-L = 1, we'’re done!

Review Questions

Assume you are given a 1D cell array containing handles to Student
objects. Assume now that the cell array of students is already sorted by
score in ascending order. Complete the following function to find

the index of the first student whose score is at least x using a binary
search strategy.

function k = scoreSearch (students, x)

% Return the index k' of the first student in students ~ whose score is
at

% least as large as x . students isa 1 D cell array of handles to Student

% objects , sorted in ascending order by their scores . If no students
have

% a score >=x, then 'k will be 1 larger than the number of students
function s = getScore (self) %gets the score of the student

Solutior

b = 1; % Smallest possible index of target

k = length (students) + 1; % Largest possible index of target
while (1b < k)

m = floor ((1b + k)/2);

if (students { m }. getScore () < x)

lb=m +1;

else

k={(m});

end

end

